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Numerical Coarsening using Discontinuous Basis Functions
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M Problem B Shape functions optimization

Geometric conditions
Slomulatlng n(.)nllne.ar and 1nh0.m0ge.ne0.lls Translation invariance, infinitesimal rotation
elastic deformation with coarse discretization invariance, node interpolation
9

Physical conditions

Reconstruct representative deformation

Harmonic regularization

B Experiments

Coarsening of elastic deformation

B Motivation and challenges

Solving nonlinear and inhomogeneous elastic
deformation using finely discretized mesh is time
demanding

Traditional finite element will suffer serious
overstiffening problem

Existing techniques are almost for
homogenization of linear elasticity

M Basic Idea

Do not attempt to homogenize the constitutive
model instead try to expand the solution space for
coarse simulation

3 G
Coarsening of dynamics

Key idea: optimize shape functions on coarse
elements
Discontinuous Matrix-valued shape functions
Conditions that balance inner-element
stiffness and inter-element continuity
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Quadrangulation through Morse-Parameterization Hybridization
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¥ Problem

Automated quadrangulation with features and
guiding frame fields

Frame field & Feature Quad-mesh

B Related works and challenges

Parameterization-based method

Efficiency o
No guarantee o

Morse-based method

Guarantee
Need dense mesh as input

Coarse mput

Dense input

M Basic Idea

Use periodic vector field to connect
parametrization- and Morse-based method.
Extract quads through parametrization and MSC.

Param Morse

u
| h(u,v) |

FhEAL: RETENES
FpEAL RETENIFESCAD&CGERS
FENERAKXERFEFR

Input Frame field Morse
mesh + features  function (Param +MSC)

B Optimize Periodic vector field

First solve an eigenvalue problem to get a good
initial value by removing nonlinear constraints.

Perform a classical penalty-based nonlinear
optimization through the Gauss-Newton method.

B Results

More efficient than Morse-based method.

More robust than Parametrization-based method.
Feature alignment.

Guided by arbitrary frame field.

Coarse mput High-quality quad-mesh
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Hybrid Quad-mesh
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DSCarver: Decompose-and-Spiral-Carve for Subtractive Manufacturing
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¥ Problem

Automatic algorithm for subtractive manufacturing
of freeform 3D objects using high-speed CNC machining.

Fig. 2. 3-axis pocket milling (left) with a square cutter vs. 3+2-axis machining (drill on top) with
a ball cutter. Scallop (red) is the material residual left between adjacent ball cutter (green) paths.

¥ Main solution

Decomposes the input object’s surface into a
small number of patches each of which is fully
accessible and machinable under a fixed drill
object setup configuration.

For each patch, compute a continuous, space-
filling, and iso-scallop tool path which conforms to
the patch boundary, enabling efficient carving
with high-quality surface finishing.

The tool path is generated in the form of
connected Fermat spirals, which have been
generalized from a 2D fill pattern for layered
manufacturing to work for curved surfaces.

Furthermore, we develop a novel method to
control the spacing of Fermat spirals based

on directional surface curvature and adapt the
heat method to obtain iso-scallop carving.

BXFRE.

B Experiments and applications

Fig.4. A gallery of surface decomposition results for
3+2-axis machining. For each model in each row, the
first two images show the accessible regions obtained
after overlap resolution in two different views; the next
two images show the final machinable patches obtained
in two views.

Fig.5. Continuous iso-callop Fermat spirals
generated by our method, over patches with
diverse geometric characteristics. To ease
visualization, we show carving paths obtained at
a low resolution.

Table 1. Comparing commericial zigzag (Z) and contour-parallel (C) tool paths to iso-scallop Fermat spirals

(F) generated by our method. We report results on patches

shown in Figure 14 using the following statistics:

number of tool path segments (#segZ,#segC and #segF); percentage of sharp turn points (%stZ,%stC and
%stF), and real machining time in seconds (tZ,tC and tF ).

Fig.6. Visualizing scallop heights over
several machined patches using our spiral
tool paths (left) vs. conventional zigzag
paths (middle), and contour-parallel paths
(righ). Redish regions indicate higher
residual marks.

Fig.3. Overview of DSCarver, our decompose-and-carve algorithm for 3+2-axis CNC machining
of freeform 3D objects.

(a) Input 3D shape with pre-segmentation into few height fields.

(b) Decomposition into accessible regions (left: with overlaps; right: after boundary extraction).
(c) Integration of accessibility decomposition (b) and height fields (a) into machinable patches.
(d) Connected iso-scallop Fermat spiral paths computed for a few patches.

EREL RETENES
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Fig.7. Photographs and close-ups of real machining results for full 3D objects, following setup
and tool path planning results obtained by our fully automatic method.
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Deep Exemplar-based Colorization
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¥ Problem

Deep learning approach for automatic exemplar-
based local colorization

=

Colorized Result

Reference

B&W Target

B Motivation and challenges

A sample reference is useful to guide the realistic
colorization:

To solve ill-conditioned colorization problem;
To allow users to control the colorization;
To auto-colorize legacy photos and videos.

The output colorization is controlled by giving
different references:

Difficult to learn without ground truth;
Semantically faithful to reference;
Perceptually plausible without proper reference.

M Basic Idea

Two novel sub-networks are combined:

A pre-process to measure semantic similarity;
An end-to-end colorization network.

Similarity sub-net

Input 1
>
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B&W Target

¥ End-to-end Colorization Network:

two-branch, multi-task

Chrominance branch: select and propagate
colors based on matching quality

Perceptual branch: predict perceptually plausible
colors even without a proper reference

Input 2 Loss
S JEEREEEEEE
' . ?_'_}Lchrom
¥ Colorization ~  Plav '
T, SimrorT b Colorization ab oo
sub-net
—
| Trap > Lperc
P
TLSimT(_)RR’ab Lab

B Experiments and applications

Robustness: robust & faithful to various references

Ref 1/Res 1 Ref 2/Res 2 Ref 3/Res 3

Transferability: the model trained on ImageNet
can process unseen images

B&W Target lizuka2016 Lasson2016 Zhang2016 Ours Reference

Legacy photo colorization
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Neural Best-Buddies: Sparse Cross-Domain Correspondence
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and their applications in computer graphics. Kfir has
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¥ Problem

Sparse cross-domain correspondence:

B Motivation and challenges

Cross Categories pairs of images

Large difference in appearance,
Selection of key-points,
Semantic correspondence,
Precise Localization,
Ambiguous correspondences

M Basic Idea

Features of pretrained deep classification network.

Mutual nearest neighbors, best-buddies,

Propagate the semantic correspondence in the
deep layers into the image pixels, in a coarse to fine
manner.

Exploiting all-layers features activations to
identify semantically important key-points

FhEA: PETENES

AEEAL: PEHEINFSCAD&CGEES
HERZRAKREZHFFRR
ExR#FE5XMEF0(ERE JUTSERITES

and visual effects as an algorithm team leader in the Isracli defense
Intelligence (IDI). Kfir holds a B.Sc. (summa cum laude) and M.Sc.
(cum laude) in electrical engineering from the Technion and is pursuing

his PhD in Tel-Aviv University.

M Algorithm:

Coarse-to-fine reconstruction, for every level:

Search best-buddies of deep features patches

Filter the pairs of features based on activations

Refine the search regions based on the filtered pairs

Transfer similar search regions to common middle
appearance

Extract k high-quality spatially scattered key-points
B Experiments and applications

Pose Robustness

Semantic Image Hybridization

Automatic Image Morphing
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Fluid Directed Rigid Body Control using Deep Reinforcement Learning
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B Problem M Training of the Network
Boundary-condition-induced control An autoencoder network extracting flow features
Control actions only applied on scene boundary A multilayer perceptron (MLP) to get the action

TRPO algorithm is used to simultaneously optimize
the network parameters in end-to-end manner

B Experiments and applications

Ball Games played by Al-controlled jets

B Motivation and challenges

Controlling problems based on fluid/rigid
interactions in movie and gaming Al industries

Boat motion control by sea current
Volleyball games played through water jets
Balancing rigid in unsteady flows

Target and Challenges

Completely physical motion in simulation

No well-defined key-frames or target shapes
Non-smooth optimization due to interaction
Limited controllable domain only on boundary

M Basic Idea

A general controlling framework based on deep
reinforcement learning, which is good at
optimizing long-term reward tasks

Music Player

Control actions are learned by neural networks

Shallow water Controller

EHRA: PETEIFES SETE. MIEE, I AS
AR RETEIIFSCAD&CGEERSR EFER: XIFN, PEMZERAKRE
PEMFRARKRFHFF HAEF: KEE, FEMERAKRE
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Anderson Acceleration for Geometry Optimization and Physics Simulation
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¥ Problem

The convergence of local-global solver is slow

Original mesh

Tutte’s embedding SIIM #iter 30000 SLIM #iter 60000

B Motivation and challenges

Adapt Anderson acceleration to speed up the
convergence of local-global solvers for :

Geometry optimization,

Physics simulation,

Centroidal Voronoi tessellation (CVT),

Any other solvers satisfying loose conditions

Propose a simple and effective strategy to
guarantee the global convergence for

Instability of classical Anderson acceleration.

Analyze the relationship between Anderson
acceleration and other quasi-Newton methods.

M Key Idea

Combine local step and global step into a
fixed-point iteration.

Apply Anderson acceleration to speed up
the convergence.

Guarantee the monotonic of target energy
to improve stability of classical Anderson
acceleration.

Apply this method on a wide range of
application including geometry optimization,
physics simulation and centroidal voronoi
tessellation

Ehsin: hEHENES
EDENL: PEHEHFERCADECCEES
PERSFRARAS R FR

ER#BFSRXBFHL(EIE LASEEHE

IN$8{EThe Visual ComputerfiTIl4RZ.

B Experiments and applications

Wire mesh design.

Target model Original Shape-Up

Our method

Log Energy
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Parameterization

Physics simulation
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Centroidal Voronoi tessellation (CVT)
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Progressive Parameterizations
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B Problem B Experiments and applications

D4: 10273 well cut meshes
Inversion-free and low distortion parameterization

D>: 61 tel | t h
[ ] Cha]]enges »: 6189 moderately badly cut meshes

The optimization problem contains the
following property:

Extremely large distortion on initialization
Highly non-linear and non-convex function
Converge slowly

B Key observation

Only a few iterations are necessary when the D3: 4250 extremely challenging meshes
distortions between the objective and current
status are bounded

M Pipeline

Construct a sequence of reference triangles
instead of optimizing the origin problem

£~ N\

t_lnputlr a3D ) Construct Update Einal Output: 2D Distribution of convergence count
rlanguiar mes new =P 5 arameterization % Optimization =P parameterization . .
+ initialization references NC: iteration number of

convergence
Ninax: maximal N
Ngyg: average N

N<100: the number of models
whose N, > 100

SLIM:[Rabinovich et al. 2017]

CM:[Shtengel et al. 2017]

W Hybrid solver

AKYVF:[Claici et al. 2017]

SLIM: recover very quickly from the bad
initialization but converge very slowly

CM: second order method, converge quickly
Our method begins with the SLIM solver and

end with the CM solver
FhEN: REVTEILFES LfE. MIEE TS
AR PEHENFSCAD&CGEES 2R, RN, R ER SRR AR A
FEREZERARKREHEFIR HIOFFE: k¥ E, PFEBERARKE
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Object-aware Guidance for Autonomous Scene Reconstruction
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¥ Problem
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M Key Components:

Automatically explore, reconstruct and understand Objectness score Objectness-based segmentation

unknown scenes within one navigational pass

B Motivation and challenges
Key insights:

Next-best-object Next-best-view

A scene can be described by a sequence of

objects.

Humans can largely guide and prioritize their
scanning effort by the objects they recognize
based on the distances, the saliency and the

familiarity of the objects.

Challenges

Define a reasonable metric for objects.

B Experiments and applications

Simultaneously segment and recognize objects.

Propose an object-guided exploration and

scanning strategy.

M Basic Idea

Use a model-driven objectness metric for

Virtual scene results

segmentation, recognition and scanning strategy:

FEfAL: PETENES
RN RENTEVIZESCAD&CGEERS
FENERARKERFESF R

Real scene results
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Predictive and Generative Neural Networks for Object Functionality
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¥ Problem B Network structure:

Given an isolated object, whether a machine can fSIM-NET:
“hallucinate” the usage scenarios like humans?

-----------------------------------------------------------
. -
. 3

Functional
£ ' Similarity
' Network
B Motivation and challenges iGEN-NET: Context Generation Network
Key observations:
“Interaction context”: the functionalities of
an object can be revealed by a 3D scene that
contains the object and one or more objects
around it.
“Interaction hallucination”: humans can iSEG-NET: Segmentation Network

predict the functionality of an object without
any surroundings based on their knowledge
and experience.

Challenges in prediction:

Learn a space of interaction contexts
defined by functional similarities.

Challenges in generation: M Experiments and applications

Train a generative model which takes a Gallery of hallucination results
single object as input and produces contexts.

M Key idea

Use deep convolutional neural networks for
functionality analysis and interaction hallucination:

£SIM-NET Desk Object < scene retrieval Multi-func synthesis
Bench
Table
IGEN-NET
ISEG-NET
FhEf: RETEIZES LfE. MIEE TS
AR PEHENFSCAD&CGEES EFEF: XFN, PERERARKRE
thERERARA SRS SR TR WRE, hENERAKAZ
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Non-Stationary Texture Synthesis by Adversarial Expansion
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¥ Problem

Example-based texture synthesis

B Challenges

Limited sources with spatial variations
Unique high-level structure

B Our Method

Our goal is to generate larger instances that
perceptually resemble a smaller texture exemplar

Key idea: teach a fully convolutional generator
network how to expand a small texture block

Method Overview

Network Architecture

FEfAL: PETENES
RN RENTEVIZESCAD&CGEERS
FENERARKERFESF R

SRR SEERERFIEX.

B Results and applications

Challenging non-stationary textures

Stationary textures

Texture transfer
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Creating and Chaining Camera Moves for Quadrotor Videography
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¥ Problem

Automatic Trajectory Generation and Shooting
for UAV on Large 3D Static Scene

static scene and global trajectory

B Motivation and Challenge

Manually capturing aerial videos with a quadrotor
mounted camera is a challenging creative task:

Simultaneously control the quadrotor's motion
and the mounted camera's orientation

Keep the drone in sight

Hard to follow a long and smooth trajectory

Automatic path generation and shooting control

Predefine trajectory the drone will follow
Predefine camera orientations
Let the drone fly automatically

W Idea

Key Steps
Visual Quality Computing

static scene and view quality filed
Local Trajectories Generating

trajectory interpolation and local trajectory candidates

FEfAL: PETENES
RN RENTEVIZESCAD&CGEERS

PENFRARFHFZF

Global Trajectory Planning

global optimal path is computed via solving STSP

B Experiments and Applications
Drone system

Mobile SDK
DJI drone&camera model which is controlled by app via DJI mobile SDK

Large scene shooting

Sea World: five landmarks(highlighted in red) and global trajectory(2988m long)

User study

Boxplot visualizations of the user evaluation comparing.
(a) Auto vs. Manual videos, and (b) Auto vs. DGS videos.
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Full 3D Reconstruction of Transparent Objects
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¥ Problem Surface reconstruction

Reconstructing complete 3D shapes of transparent
objects with known refractive index

B Experiment

Synthetic examples

M Challenge

Transparent objects do not have their own
appearances, such that conventional color/texture
matching based approaches cannot be applied

M Idea

How transparent objects refract lights can be used
for surface geometry inference

Silhouettes can be applied for shape initialization Real objects
and also provide accurate boundary constraints
M Algorithm
Data capturing
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